Butterfly Wing Site-Specific Installation – Emily Volk

Inspired by the scale detail of butterfly wings, my project at Digital Naturalism centered on gathering microscope images and videos of butterfly wings, and using them for a site-specific projection installation.


Butterfly wings produce their detailed coloration and patterning through light refraction off of microscopic scales that cover the surface of wings. Scales also cover the heads, as well as parts of the thorax and abdomen in insect species, including butterflies. Scales also aid in flight and help waterproof the insect, and their delicate nature is a reason to avoid touching live butterfly wings (all of my specimens were deceased and gathered throughout the trails, roads, and buildings of Gamboa)! Through various optical properties of these microscopic scales, intricate and detailed patterns of colors are created across butterfly and moth species.

Panama is home to a great diversity of the world’s butterflies and moths, many of whom exhibit dramatic wing coloration. Panama is especially known for its diversity of neotropical Heliconius butterflies, which express an incredible array of wing colors and patterns. Panama is also known for its many mimics, as well, or species who express the same coloration for various hypothesized reasons, including imitating poisonous species in order to deter predators in a process called Batesian mimicry. Exploring the genetic pathways for scale expression, wing coloration, and patterning is an area of current research and interest to better explain the relationships between the incredibly rich array of butterflies in areas such as Panama.

Overall, scales provide not only biologically useful functionality through meaningful coloration and mimicry, assisting in flight, and waterproofing, but also draw the eye with incredible aesthetic beauty. To expose an audience to the aesthetic and biological wonder I find in observing butterfly wing scale detail, I gathered an array of microscope images and video of butterfly wing scale detail, and displayed my media in a site-specific projection installation outside of Dinalab on a public exhibition evening.


Throughout my time at the conference, I gathered deceased butterfly specimens throughout the Gamboa area. I found deceased butterfly wings, or fragments, throughout trails, roads, and buildings of Gamboa. Importantly, all specimens I gathered were deceased when found. Absolutely no live butterfly or moth specimens were handled during my time at Digital Naturalism Conference. Throughout my time at the conference, I collected wing fragments from a diversity of species. (As of October 1st, 2019: Many of these I am still working on correctly IDing–please reach out with correct scientific names for those shown!)

We found an incredible number of butterfly and moth fragments on the patio of the Gamboa Smithsonian Tropical Research Institute (STRI). Here are wings found by Tiare Ribeaux–her phone served as our collection plate after being surprised by the number of wings here! Unfortunately the STRI entryway seems to be an insect graveyard, being a large, concrete and covered area with consistent nighttime lights overhead.

Microscope Images and Video

I used a Plugable USB microscope (thanks Lee Wilkins, Dinasaur extraordinaire!!) and Plugable Digital Viewer free software (https://plugable.com/drivers/microscope/) to gather both video and still images of microscopic detail on collected specimens. (As a special shout-out to this microscope, it is relatively affordable at about a $20 price point online! Get your own, and explore microscope imagery in your own area!!).

Here is a selection of my favorite still images:


Installation set-up scene. Computer, projector, bromeliad and vegetation galore!

To display the microscope video I collected of wings, I set up a site-specific projection installation at one of our evening Digital Naturalism public installations in and around our Gamboa Dinalab. Here, I projected my microscope videos of butterfly wing detail onto a utilities box (shown below, from front and side). These utilities structures are common throughout Panama, and appear to me to be open canvases for a variety of art! This type of public canvas is especially conducive to using projection, which does not harm or modify its canvas.

I am drawn to projection art as a medium that seems to me to be both a light and a fluid. In working with projection, I seek to modify projection canvases to insert mobility, depth, and layers into a projection-based art installation. I’m interested in projection work that gives videos motion and disrupts a 2D canvas. I find that projection, through it’s light, motion, and ability to display on various surfaces, can be a uniquely dynamic and immersive medium for art installations. In using projection for my wing video installation, I seek to draw an audience into the colors and scale detail with a projection environment that blends technology, biology, and fascination.

I incorporated natural elements into the installation through arranging bromeliads saved by Dinasaur Rabia from a local tree-trimming operation and an adjacent tree in the projection surface. The process shots above and below show the location of my local Gamboa installation!

Still photos of installation


I received feedback on my installation from Panamanian artist Kevin Lim. For more feedback or project inquiries, please leave a comment below!

Future Work

Importantly, the media I collected of microscopic wing detail is now portable. With these images and video, I can create more site-specific installation pieces in different environments. I hope to explore a more static installation piece, in a gallery setting or outdoors, where these microscope videos are projected onto a mobile screen shaped like a wing, that can flutter in the wind.

Additionally, as always, I seek opportunities to continue to merge science and art in creative ways to showcase and promote the fascination and inquiry inherit to both disciplines.

For inquiries or collaborations, please comment on my bio page on the Digital Naturalism website, or reach out online through another medium.

Utter excitement with the flexibility of site-specific projection, and all of Dinacon:

Yay Dinacon!

Further Reading and Exploration

“Butterfly scale optics” Google Images search 🙂

Butterfly Wing Optics STEMvisions blog post (https://ssec.si.edu/stemvisions-blog/butterfly-wing-optics)

Deshmukh, R. , Baral, S. , Gandhimathi, A. , Kuwalekar, M. and Kunte, K. (2018), Mimicry in butterflies: co‐option and a bag of magnificent developmental genetic tricks. WIREs Dev Biol, 7: e291. doi:10.1002/wdev.291

Florida State University and Olympus’s collaboration site Butterfly Wing Scale Digital Image Gallery (https://micro.magnet.fsu.edu/optics/olympusmicd/galleries/butterfly/index.html)

Kolle, M., Salgard-cunha, P., Scherer, M. R. J., Huang, F., Vukusic, P., Mahajan, S., . . . Steiner, U. (2010). Mimicking the colourful wing scale structure of the Papilio blumei butterfly. Nature Nanotechnology, 5(7), 511-5. doi:10.1038/nnano.2010.101

Srinivasarao, M. (1999). Nano-Optics in the Biological World: Beetles, Butterflies, Birds, and Moths. Chem. Rev., 99(7), 1935-1962. doi: 10.1021/cr970080y.


Generous thanks to the Boulder Arts & Culture Professional Development Grant program for funding my 2019 Digital Naturalism Conference engagement.

Special appreciation goes to Betty Sargeant and Madeline Schwartzman, whose initial microscope exploration of insect wings and feathers drew me in to further exploring microscope wing detail! Thank you for sharing your incredible work, expertise, curiosity, and inspiration during my first days acclimatizing to Dinacon, and throughout our time together.

Thank you to Lee Wilkins for letting me use your rockin’ microscope!

Thank you to Tiare Riabeaux for mega wing collection during our few days of overlap (on-the-phone photo).

Thank you so much to Dina-captain Andrew Quitmeyer for tireless enthusiasm, and bringing us all together with your brilliant conference and curiosity!

And to all of you across the huge Digital Naturalism community, I’m so happy to have all of you new, inspiring friends and peers <3

Froggy camouflage handheld fans

Project by Anna Carreras. BAU Design College of Barcelona, Spain.

Hand fan (abanico) inspired by a glass frog. Photo by Anna Carreras. Gamboa, Panama.

Rainforests of Panama are some of the world’s most biologically diverse areas. Animals use camouflage tactics to blend in with their surroundings, to disguise their appearance. They mask their location, identity, and movement to avoid predators.

By the other hand in cities in many countries the increased use of surveillance technologies have become part of the public and private landscape. Citizens lack of camouflage tactics to avoid these forms of elevated vigilance. Can we learn and borrow tactics from animals to keep away from this constant monitoring?

The froggy camouflage handheld fans project proposes a playful way to act upon our surveying world while learning from frogs camouflage in Gamboa rainforest, Panama.

Hand fan inspired by a dart frog. Photo by Anna Carreras. Gamboa, Panama.

Nature in Gamboa

Exploring nature, animal watching in Laguna Trail. Photo by Marta Verde. Gamboa, Panama.

Attending the Digital Naturalism Conference (Dinacon) from August 26th to September 1st offered the possibility to do several exploratory walks around Adopta un Bosque station, La Laguna trail in Gamboa and Pipeline road on the border of the Soberania National Park. Animal watching includes birds (thank you Jorge), frogs, mammals and several butterflies and insects.

Bat sleeping place near the Panama Canal. Photo by Marta Verde. Gamboa, Panama.

A species’ camouflage depends on the physical characteristics of the organism, the behavior of the specie and is influenced by the behavior of its predators. Background matching is perhaps the most common camouflage tactic and animals using this tactic are difficult to spot and study. Another camouflage tactic is disruptive coloration that causes predators to misidentify what they are looking at. Other species use coloration tactics that highlight rather than hide their identity. Warning coloration makes predators aware of the organism’s toxic or dangerous characteristics. This type of camouflage is called aposematism or warning coloration.

Animals with different camouflage tactics. Photos by Mónica Rikić, Marta Verde and Tomás Montes. Gamboa, Panama.

Studding camouflage tactics includes animal observation and some readings. Frogs are easier to spot and photograph in Gamboa than insects or snakes. The animal books at Adopta un Bosque station and Dinalab gave the opportunity to classify the different species and gain some knowledge about their colors and skin patterns.

Frog spotted and photographed during Pipeline road walk. Photo by Tomás Montes. Gamboa, Panama.
Frogs spotted and photographed during walks. Photos by Tomás Montes, Päivi Maunu, Jorge Medina and Tomás Montes. Gamboa, Panama.
Frog identification triptych at Dinalab. Photos by Anna Carreras. Gamboa, Panama.
Frog identification book at Adopta un Arbol station. Photos by Anna Carreras. Gamboa, Panama.


Different frog skin patterns generated mathematically. Images and code by Anna Carreras.

The skin of some animals show a self-ordered spatial pattern formation. Cell growing and coloration creates some order resulting from the specific differentiation of cell groups. In such complex systems cells are only in contact with their closest neighbors. Which are this morphogenesis mechanisms where some order emerges from individual cells? Which are the mathematical models we can use to achieve this kind of growing patterns and gain some knowledge about them? Can we simulate some frog’s skin visible regularities with a coded system?

The mathematician Alan Turing predicted the mechanisms which give rise to patterns of spots and stripes. The model is quite simple, it places cells in a row that only interact with their adjacent cells. Each cell synthesizes two different types of molecules. And this molecules can diffuse passively to the adjacent cells. The diffusion process makes the system and the whole result more homogeneous. It tends to destroy any ordered structure. Nevertheless the diffusion process with some interaction by the cell molecules drives to macroscopic ordered structures. The mechanism is called reaction–diffusion system. It drives the emergence of order in a chaotic dynamic system.

Steps of a reaction-diffusion model evolving from chaotic randomness to structured patterns. Images by Anna Carreras
Steps of a reaction-diffusion model evolving from chaotic randomness to structured patterns. Images by Anna Carreras.
Steps of a reaction-diffusion model evolving from an organized grid to emergent patterns. Images by Anna Carreras.

Code and interface

Frog pattern generator using a reaction-difussion system. Image and system by Anna Carreras.

A system using the Gray-Scott model and formulas was coded in Processing language. The interface shows the animation of how a frog skin evolves. The GUI also shows the system values that lead to that skin pattern formation. These values and two selected colors generate a unique frog pattern each time the system is started. The spatial feeding system options and the values that can be selected and adjusted are inspired by Gamboa’s frogs. They derive from the observed and photographed species and from the consulted books.

Frog pattern generator using a reaction-difussion system with random feeding. Image and system by Anna Carreras.

Camouflage DIY hand fans

Two different hand fans. Photos by Anna Carreras. Gamboa, Panama.

Frog skin images are used to create light folding hand fans. They are suitable for Gamboa’s hot weather and help to camouflage inside the rainforest. They can easily be taken home and used around the world in several cities.

To build the hand fans two parts are needed: the fan frame and the fan leaf. The designed DIY hand fan is designed as a traditional Spanish hand fan. The frame structure is made of a thin material that can be waved back-and-forth, birch tree or pear tree wood.

Traditional Spanish hand fan structure for laser cut. Designed dxf file by Anna Carreras.

The produced hand fans use 0.8mm thick birch wood to make sure it can bend without breaking. The fabrication starts laser cutting the 16 fan ribs for the frame and printing the camouflage image. Cut the fan leaf, using scissors, as a half circle measuring 210mm the exterior radius and 95mm the inner radius.

Laser cutting the hand fan ribs structure. Photo by Anna Carreras.

When the parts are ready put together the 16 fan ribs, one wide rib at the beginning and one at the end. Fix the fan ribs with a m3 screw and nut, a metric screw with nominal diameter of 3mm or 0.12in. Extend the fan ribs as an opened hand fan. Glue the fan leaf on the thiner exterior part of each rib and allow the glue to dry. Finally, one rib at a time, put it above the previous ones and fold the paper carefully to create the folding shape.

Hand fan in action. Photos by Daniëlle Hoogendijk and Anna Carreras. Gamboa, Panama.
Resulting DIY hand fans. Photos by Anna Carreras. Gamboa, Panama.


Glass frog hand fan. Photo by Anna Carreras. Gamboa, Panama.

Two different models of the Froggy camouflage handheld fans were created. The green one is inspired by the glass frogs and the orange fan is inspired by the pumilio dart frog. Both frogs live in Panama.

Glass frog and Pumilio dart frog. Photos by Anna Carreras and Pavel Kirillov [CC BY-SA 2.0]. Gamboa and Bocas del Toro, Panama.
Glass frog hand fan. Photo by Anna Carreras. Gamboa, Panama
Pumilio dart frog hand fan. Photo by Pavel Kirillov [CC BY-SA 2.0] and Anna Carreras. Gamboa, Panama

The glass frog handheld fan and the pumilio dart frog handheld fan integrated quite well with Gamboa’s surroundings and the rainforest.

Glass frog hand fan. Photo by Anna Carreras. Gamboa, Panama.
Pumilio dart frog hand fan. Photo by Anna Carreras. Gamboa, Panama.
Glass frog hand fan camouflaged between leaves. Photo by Anna Carreras. Gamboa, Panama.

Conclusions and future work

To  act  upon  our  surveying  world camouflage is one of the plans we can play. It rises issues of mimesis, crypsis, perception, privacy and identity. Some artistic projects about fashion and cosmetics have been developed with this idea, like CV Dazzle and HyperFace, among others. The Froggy camouflage handheld fans project sums up in this direction creating hand fans inspired by Panama’s frogs camouflage strategies.

We can gain some knowledge and learn from animals and their hiding techniques. Some animal camouflage skin coloration can be modeled as a quite simple dynamic system that generates complex ordered patterns. We can mathematically model and code the system to simulate the growing process of frogs skin coloration. It helps us to better understand how different frog species have certain particular patterns. Moreover it gives us some insight about how order can emerge from random initial conditions.

Different animal patterns and camouflage tactics can be further investigated. It can help us to achieve different and diverse algorithms and colored results. They can suit in different environments and they can help us camouflage from the increasing number of surveillance systems. A battle between algorithms learned and borrowed from nature against vigilance algorithms.


Dinalab open Saturday exhibition. Photo by Anna Carreras. Gamboa, Panama.
Dinalab open Saturday exhibition. Photo by Anna Carreras. Gamboa, Panama.


First I would like to thank Dr. Andrew Quitmeyer for organizing the event and all the participants I met at Dinacon Gamboa. And thanks to Marta, Mónica, Tomás, Jorge, Päivi and Dani to help me documenting the work.


Book The Chemical Basis of Morphogenesis. Alan Turing. 1952.

Book Orden y Caos en Sistemas Complejos. Ricard V. Solé, Susanna C. Manrubia. 2000.

Videotutorial Coding challenge #13: Reaction Diffusion Algorithm in p5.js. Daniel Shiffman. 2016.

Project CV Dazzle: Camouflage from face detection. 2010.

Project HyperFace: False-Face Camouflage. 2017.

Aerial Map of Gamboa

Jonathan Hefter

During dinacon, we utilized aerial photography and photogrammetry to create an aerial mapping of Gamboa.

First, we used the resident dinalab drone, a DJI Mavic 2 Zoom, and an online tool, DroneDeploy, to create a flight plan that would send the drone autonomously zigzagging across Gamboa, producing hundreds of high-quality photos. Then,we processed the photos with software that performed photogrammetry – a technique that measures the difference in perspective from multiple photos to create a range of specialized digital images. Some of the software we tried for photogrammetry included DroneDeploy, 3DF Zephyr, Metashape, and OpenDroneMap.

One limiting factor was computing power. Photogrammetry is a very processor-intensive operation, best done with powerful graphics cards. For this project we only had the CPU of a Lenovo X1 Carbon ultrabook, leading to many hours of processing to achieve maps of medium detail. Fortunately, the DroneDeploy software is cloud-based, so we were able to get quick results with that. Additionally, by fine-tuning settings and allowing the laptop to process overnight, we were able to get good results with the other software, particularly 3DF Zephyr.

Models are all opensource and available here: https://drive.google.com/open?id=19eKoAMwny8L8_hqb_ZFEF0w98g-6tIlv

(And soon on sites like Thingiverse)

Processing drone photos (bottom) into maps in 3DF Zephyr.

The following images were processed using DroneDeploy.

3D Model
This 3D model of Gamboa is an obj file, which can be imported into Unity or printed with a 3D printer.

Gamboa 3D Model
Gamboa 3D Model, with artificial lighting added for a sunset

An orthophoto is an aerial photo that has been geometrically corrected, giving an accurate, uniform scale between points on the map and providing a direct, top-down perspective for every point of the image.

Orthorectified photo of Gamboa with areas of interest circled (displayed below)
Dinalab (mild distortion)
Adopta Guest House
Cresolus Tropical Architects
Smithsonian Tropical Research Institute

Elevation Map
Displays relative elevation of an image, from lowest (blue) to highest (red).

Relative elevation map of Gamboa

Joetta’s Project: Animal-Inspired Playful Eating Experiences

  • Idea: a handful of food experiences inspired by the creatures around us in Panama, using either the food eaten or the manner in which its eaten to bring this to life
  • Reality: two rough prototypes of interactions with edible materials inspired by animals (hummingbird and anteater) and limited to what I could find at the tienda and locally


  • Idea: fill edible flowers with nectar that people eat sipping through a small straw, like a hummingbird
  • Reality: 
    • Marzipan made with salted almonds from the tienda is an ugly color due to the skins
    • The humidity makes it nearly impossible to hold a structure with just almonds and sugar, cornstarch helped, as does lots of drying out in the fridge
    • Using the blender did NOT work—and then I realized there was a food processor
    • The goji berries mostly got blended in but there are some chunks
  • Supplies: 
    • Marzipan flowers: food processor, 2 snack packs of salted, roasted almonds, a bunch of powdered sugar, goji berries and algae (blue and green—thanks Elliot!) for color, cornstarch to try to deal with the humidity, some marshmallow fondant for the extra flowers
    • Nectar: the flesh of jobo fruits (spondias mombin, thanks Jorge for the ID!) gathered from the ground (thanks Sid for the idea!) boiled with sugar, water, honey, and cornstarch to create a nectar, then used the boiled fruit for the center of the extra flowers, and straws I took from the coffee shop at the Miraflores locks. 


  • Idea: create small “bugs” out of food from the tienda and have people eat them out of a fruit with a tongue made of a palm frond covered in honey 
  • Reality: 
    • In 2014 Hershey’s patented a chocolate that doesn’t really melt. That’s the chocolate they sell at the tienda, so I wasn’t able to coat the marshmallow fondant in chocolate to make ants. So…they’re larvae.
    • The original bugs were too big and heavy to be lifted by honey so I had to make them pretty tiny and shapeless.
    • I couldn’t really figure out the right fruit to put the bugs in, so I ended up chopping some green coconuts in half and using those to hold the “bugs.”
  • Supplies:
    • Palm fronds from Andy’s front yard coated in Dinacon honey
    • Bugs made from a combo of marshmallows pilfered from a bag of chocolate cereal and powdered sugar
    • Green coconuts pulled from a roadside tree


  • Be a hummingbird:
    • Grab a little straw and put it in your mouth. Sip some of the nectar from one of the flowers.
    • For advanced mode, flap your arms like wings the whole time. Ha!
    • Grab a flower from the plate as a sweet snack if you want.
  • Be an anteater:
    • Grab a palm frond and dab some honey along one side.
    • Put the wide end in your mouth and use it to collect some “bug larvae” from one of the coconut shells.
    • You can eat the larvae if you want—they’re very, very sweet. 🙂

Seedpod LED Hack (Easy, educational bio-augmentation project) – Emily Volk

Exploring around Gamboa on trails and streets, I became fascinated with these flower-shaped seedpods. They appear as woody flowers, nearly blooming to release their inner fruit, and then expanding greater as they dry. This seedpod stalk was the first jungle object that I picked up as debris in the streets of Gamboa, and served as my first inspiration for a basic bio-hacking LED light project. What follows is a quick and easy tutorial for a basic natural object bio-augmentation project. This can serve as a simple lesson plan to explore bio-hacking to merge technology with natural objects and the directionality of LEDs.

Personal Process

Decorative Light: Personally, I explored various ways to rig this seedpod stalk as a full LED light that could decorate a space as a hanging decorative light. For this, I experimented with various conductive materials provided by Dinalab, including conductive thread and copper tape. I hoped to use a conductive wiring material that would either blend in to the seedpod stalk, or add aesthetic detail in the form of an attractive color or form. I did not settle on a favorite method for this full-stalk augmentation, and encourage others to pick up this process to explore different modes of creating a lamp with many seed pods!

Tactile Engagement: I also explored various interaction designs using LEDs to inspire tactile and up-close exploration of this seedpod I found to have such a fascinating shape and process of opening. In this exploration, I used LEDs activated by a DIY button where squeeze intensity and location determined which LED would light, and LED brightness. These LEDs and the tactile button control were meant to encourage a viewer to pick up the seedpod stalk, and explore both its structure and LED light augmentation as a way to encourage close observation of a natural structure.

Tactile exploration of bio-augmented LED seedpods, including fun Dinacon atmosphere of giggles and sharing work with an inspiring peer!

Project Tutorial: Quick educational lesson plan to explore bio-augmentation and LED basics!


In this quick tutorial, we explore a basic bio-augmentation project of adding an LED to a dried seedpod in order to make a quick and easy light. This project highlights the directionality of LEDs, and explores how technology and nature can merge to create new and innovative forms based on personal interest and exploration of natural objects.


  • Seedpod!
  • LED
  • 5V coin cell battery


The miraculous element of this project is how perfectly the base of one of these fully opened seedpods fits a standard 5V coin cell battery. This served as inspiration for this project, and allows the little LED product to be a compact and pretty sturdy unit!

Basics of LEDs: LED stands for “light-emitting diode.” A diode is a semiconductor device which only conducts electricity in one direction. An LED is a particular type of diode that emits light when current passes through it, in the positive to negative direction. On a basic LED, you can tell which side is positive for wiring because the positive prong is longer.

To fashion your own seedpod light, first note which side of your LED is positive (longer wire) and which side is negative (shorter wire). Then, extend the prongs of your LED horizontally, and carefully place your LED into the center of your seedpod. Position the LED prongs as close to the base of the pod as possible, and between “petals” of the pod. To secure your LED in your seedpod, carefully bend the prongs of your LED down with tension, which will secure your LED in your seed pod.

LED positioned in the middle of the seedpod, like the center of a flower. LED prongs are positioned through the gaps in the seedpod “petals,” and bent downward to secure the LED in the center of the pod.

From here, bend your LED prongs. Bend the negative prong to lay horizontally across the back of your pod, as close to the base as possible. Then, bend your positive prong above this, but leave slightly more space from the back of the seedpod. Make sure the positive and negative prongs are not touching, as this will short-circuit your LED.

Negative prong is bent level with the seedpod base, very close to the surface (left wire). Positive prong is bent slightly above the surface (right wire, above).

This little pocket between LED wires forms the fixture for your coin cell battery! Place your 5V coin cell battery face up (positive side up), and secure by clamping down the positive LED prong over the battery. Keep bending until the battery is snugly secured in the seedpod, and firmly contacting the negative LED prong.

Your LED should now be lit, leaving you with a completed little bio-augmented seedpod light! Make as many as you want, now that you know the basics of LED directionality and can experiment beyond with bio-augmentation.


Feel free to reach out with any feedback or interest. Thanks!

The Future Within – Grace Grothaus

Grace Grothaus
THE FUTURE WITHIN: A digital seed archive and interactive sculpture series exploring
threatened plant biodiversity in the americas

“First and above all an explanation must do justice to the thing that is to be explained, must not devaluate it, interpret it away, belittle it, or garble it, in order to make it easier to understand. The question is not “At what view of the phenomenon must we arrive in order to explain it in accordance with one or another philosophy?” but precisely the reverse: “What philosophy is requisite if we are to live up to the subject, be on a level with it?” The question is not how the phenomenon must be turned, twisted, narrowed, crippled so as to be explicable, at all costs, upon principles that we have once and for all resolved not to go beyond. The question is: “To what point must we enlarge our thought so that it shall be in proportion to the phenomenon…” – Schelling

“The future is not in front of us, for it is here already in the shape of a germ (seed).” “What is not with us will not be, even in the future.” Čapek

A result of cumulative anthropogenic activity, global mass extinction is currently in progress, a phenomenon which many refer to as the sixth extinction. I am attempting to grappling with this phenomenon as an artist and to live up to the enormity of the subject. In Schelling’s expostulation I begin to see the beginnings of a course of action. To enlarge my thought to be in proportion to the phenomenon, I must immerse myself in it, far beyond the four walls of my studio. In so doing I deepen my knowledge base and in turn the efficacy of my artistic practice upon return to studio. We see more clearly by recording what we see firsthand. With this understanding and via the support of the Digital Naturalism Conference, the Tinker Foundation, and the University of California San Diego, I conducted field research July-September 2019 in forests across the Americas: South, Central and North. Specifcally in the Panamanian canal zone tropical moist broadleaf forest (“rainforest”), Brazilian Cerrado, Mata Atlântica, and the North Atlantic forest of the Blue Ridge Parkway. Especially in Panama and in Brazil, these biodiversity hotspots are home to a great number of endemic species, some of which have not yet even been discovered. Especially in Brazil they are also threatened. According to UNESCO, the Cerrado, the second largest biome in South America, less than 30% of the natural vegetation remains and continues to shrink and the original Mata Atlântica has experienced 85% deforestation. These are places of irreplaceable biodiversity. For example the Cerrado is the most biodiverse savannah in the world. Yet devastating losses continue. It is highly probable that many endemic species have already faced extinction before being recognized by the scientific community and the broader world at large, and even more are at risk today.

These past few months during my hikes in these forests and grassland, I sought out seeds, seedpods, and fruiting bodies of as many different plant species as possible and from them created 3D digital models. In this way I digitally collected 60 unique specimens in Panama during Dinacon, another 152 in South America, and 45 thus far from North America where I am working now. All together this represents 257 unique species. The digital models of them are comprised of a staggering 26,000+ images taken of the specimens during the photogrammetry process. In addition, I have nearly seven thousand photographs, video, and audio recordings, numerous field notes and
sketches. Via field guides and discussion with generous researchers at Inhotim Botanical Gardens, the Smithsonian Tropical Research Institute, and the University of California San Diego I have been identifying the species of my specimens and learning about them.

In particular, discussion with two of STRI’s post-doctoral research fellows about their
research into seed dormancy in tropical forests was eye-opening. Seeds in more temperate forests are known for their lengthy fertile dormancy and it is not unknown to find specimens to lie dormant but still viable for even tens of thousands of years, yet in tropical forests the duration is much shorter, ending after only a few years and stretching into a decade or two max, species and soil conditions dependent. Reasons are not wholly clear, yet in both locations the seeds are not impaired by the soil, rather they actually need the soil microbes for the possibility of germination. Like the wildfires of the Cerrado, tropical soil is able to abrade the seed surface enough for germination. Seeds possess a chalazal area or plug, a round location on the surface that must break away, in order for the plant embryo inside to emerge and grow. In discussion of mechanisms by which future climate change may affect the species they study, the researchers explained that it is not only microbial/soil abrasion in the tropics that are sufficient to break physical dormancy in seeds, but also fluctuations in
the soil temperature. Surface soil temperature is dependent on ambient air temperature and so in a much warmer future, the viability window of opportunity for these seeds may well shorten. This is but one of the numerous concrete mechanisms by which species in this biome face future loss and potential extinction, and one I was previously wholly unaware of.

It can be cognitively difficult to focus on the slow growing and near silent plants around us. We have a tendency to look at plants as part of another and separate “natural world,” perhaps even a backdrop upon which we and other animals live out our lives, but this mindset is a fallacy. Plants are the keystone upon which all mammals rely.
The pace of plant growth is so slow compared to human movement, it lends toward the human impression of the plant world as constant, reliable backdrop, yet everything is growing constantly and all that I observed was constantly in flux. I’m grateful for the extended time dedicated to careful observation this field research provided, and reminded of Heraclitus’s truism that you can only step into the same river
once. In the same way that it is difficult to focus attention for the length of time requisite to really witness a plant grow, climate crisis is similarly difficult to observe, and yet with both the cumulative changes are unmistakable.

The photogrammetry process enables me to digitally collect only and leave no trace behind me – the real specimens in their home environments where they belong. I am developing a growing digital record, but just a tiny fraction of the species diversity that was all around me. Many more species were not in seed during the time of my visit and many more eluded my discovery, having already dispersed to the wind, soil, or animal digestion. The seed specimens I did collect vary greatly in size from a paper thin ~1/64 of an inch thick to 18 3/8 inch long. I was thorough in my collection but still others were too small, lacking any dimension of length and therefore impossible to capture using the set-up available to me. Perhaps farther in the future with other support I’ll be able to model via micro MRI imaging. In the near term I am now in the process of turning these digital models into sculptures. printing them into physical objects and embedding my motion-sensitive electronics inside that will enable the finished sculptures to murmur sounds into our ears. If a seashell held to the ear presents to our imagination sounds of the ocean though in fact amplifying the rush of our own blood circulating, then perhaps these seed sculpture sound compositions, composed from field recordings and whispered text, will amplify our hopes and fears about our planetary future to a level that we cannot ignore.

Tadpole Soundscapes of Gamboa

By Lee Wilkins and Samantha Wong

Tadpole Soundscapes of Gamboa is a generative soundscape made in collaboration with wildlife of Gamboa. The audio is generated via Processing through a live webcam feed of tadpoles. Recordings are compiled from various artists to create a unique soundscape based on the movement and patterns of the observed tadpoles.  As the tadpoles move and evolve, so does the soundscape.

Recordings featured by: Peter Marting, Michael Ang, Lee Wilkins.

Two Generative Poems

Generative poetry introduces chaos and multiplies possibilities. Also, it constrains the author. It forces her to consider language as a series of assorted tools. What does an adjective do to a poem? How can we categorize adjectives? What makes an answer?

The process for creating these poems involved stretching my brain into a different type of writing-thinking. Normally when I write, I think of specific words and ideas. For these poems, I had to make myself consider questions like: “What are the characteristics of the language formula, ‘the + adjective + noun + verb + direct object?'” What associations do we have with that particular language equation? “

There aren’t concrete answers to these questions. But by asking the questions and sorting different language formulas into what feels most thought-provoking, I could begin to write the poems. For example, the first step of my writing process for the poem, “theProjectOfTheAgouti,” was a decision to have the poem be a short narrative about coming across a person, asking them a question, and waiting in anticipation for their answer. This was my more Dinacon-related poem, as one of the primary dynamics of Dinacon for me has been trying to learn as much as I can from others, which is an inspiring, but sometimes fraught process. A large portion of the word banks for this poem involved Dinacon-related words and overheard conversation, and I inserted Dinacon participants’ names in for the characters of the poem. I also brought in the personage of Bolsonaro, and the location of the Amazon, since the Amazon fires were just being publicized at that time, and seemed especially poignant as we were in a different, not on fire, rainforest.

For the second poem, I allowed myself to venture away from Dinacon a little bit. I wanted to write a poem about the process of searching for things and being thwarted, and then trying to appreciate what happens even if it’s not what you were looking for. The poem, “sometimesAtDawn” was the result.

One of the technical challenges of the poems was playing with timing. I wanted to introduce a bit of hesitation into the program, in order to mimic the rhythm of writing. The idea was to further flesh out the fantasy that the computer was writing a poem. I think I succeeded only partially in this respect, and have other ideas I still want to implement.

A language-related challenge was how to make the poems surreal, while also seeming potentially meaningful. So many automatically produced poems come across to me as complete nonsense. I wanted the reader to have that pleasurable feeling that comes from reading something very strange and somewhat random and making meaning out of that. This challenge involved a lot of tweaking of the word banks, so that no poem would seem completely unreasonable. The more I can walk the line on this though, the more the reader can recognize the creative process involved in reading anything and processing any information. My most ambitious hope with a project like this is that the reader will come away with an understanding of how much their particular brain shapes everything that they take in, and along with that, a healthy distrust of their own thinking patterns.

Here are two examples of the poems. If I’ve calculated correctly, “theProjectOfTheAgouti” has about 200 million possibilities (though many of them are very similar to each other) and “sometimesAtDawn” has around 500,000 possibilities. Automatically regenerating versions of the poems can be viewed on my website dezmediah.com


In the Dinalab,

there is Andy.

“What is the project of the agouti, Andy?”

Andy screams.

“The slime eats the oats in the most efficient way possible.”



at dawn,

I look past the

3D print of a rambutan

behind my bathroom mirror,

and find


a drooling

valerian root.

Experiencing Gamboa, Panama

Susan Booher, Ohio State University, MFA Candidate
Project Created for the Digital Naturalism Conference, 2019 in Gamboa, Panama

360-degree Rainforest Video:
A Samsung Gear 360-degree camera was used to record the plants and trees of Gamboa’s nearby rainforest to share with aging and disabled people that were currently living in Columbus, Ohio and beyond. I wanted to make the experience an immersive one, so they’d get the sense of being in the rainforest.
I recorded 3 separate 30-second videos along the La Laguna trail within several feet of one another while I hid behind a tree. I wanted to record them to share on Vimeo with older adults to use their computer mouse to scroll over the video to see it in 360 degrees. There’s also potential future use of experiencing these 3 videos in virtual reality through the Unity video game program; individuals could view them through VIVE’s head-mount display and hand controllers.

Experience Gamboa Video Journal:

While I was attending Dinacon2 August 4-10, I journaled the animals I observed so I created a non-360-degree video highlighting some of these animals, plants, and nearby Embera Indian Village. The log of observed animals is shown in the video, which includes a variety of animals and insects. Leaf-cutter ants, hummingbirds, and agoutis were seen every day around Adopta Bosque field station. The video was uploaded to Vimeo. https://vimeo.com/360108961

Observations of Animals 8/4/2019-8/9/2019

ATTAFit – Workout Like a Leafcutter Ant

Ann Gerondelis, Drexel University
Raja Schaar, Drexel University

Project created for the Digital Naturalism Conference, 2019 Gamboa, Panama

Walking around Gamboa it’s hard not to be mesmerized by the superhighways of ants recognizable by large distinct paths of wobbly leaves.

Our team dove into observational research, expert knowledge, internet findings, and one amazing book found at the field research station to find out more about these mesmerizing creatures.

Getting swole like an ant?

A fitness app for digital naturalists and folks who think Leaf Cutter Ants are superfit superorganisms.

This short workout invites you to be the ant, strengthen your body, and learn about ants’ intimate relationship with mother earth.


Over a four-day period, we designed, tested, and prototyped our app with fellow conference attendees (surrounded by the rainforest no less). The content was key in delivering an experience that mimics the fascinating farming of fungus and other leafcutter ant behaviors.


We hope this gives you a glimpse into the above and below the ground world of the leafcutter ant.

Thanks to all the Dinacon attendees, Henrietta Mango the sloth, and Smithsonian scientists who inspired us during our time at Gamboa!